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Abstract. Vehicular emissions contribute a significant portion to fine particulate matter (PM2.5) air pollution in urban areas. 

Knowledge of the relative contribution of gasoline versus diesel powered vehicles is highly policy relevant and yet there 

lacks an effective observation-based method to determine this quantity, especially for its robust tracking over a period of 

years. In this work, we present an approach to track separate contributions by gasoline and diesel vehicles through positive 15 

matrix factorization (PMF) analysis of online monitoring data measurable by relatively inexpensive analytical instruments. 

They are PM2.5 organic and elemental carbon (OC and EC), C2–C9 volatile organic compounds (VOCs) (e.g., pentanes, 

benzene, xylenes, etc.) and nitrogen oxides concentrations. The method was applied to monitoring data spanning over six 

years between 2011 and 2017 in a roadside environment in Hong Kong. We found that diesel vehicles accounted for ~ 70–90 

% of the vehicular PM2.5 (PMvehicle) over the years and the remaining from gasoline vehicles. The diesel PMvehicle during a 20 

truck- and a bus-dominated periods showed declining trends, in coincidence with control efforts targeting at diesel 

commercial vehicles and franchised buses in the intervening period. The combined PMvehicle from diesel and gasoline 

vehicles by PMF agrees well with an independent estimate by the EC-tracer method, both confirming PMvehicle contributed 

significantly to the PM2.5 in this urban environment (~ 4–8 µg m–3, representing 30–60 % in summer and 10–20 % in winter). 

Our work shows that long-term monitoring of roadside VOCs and PM2.5 OC and EC is effective for tracking gaseous and 25 

PM pollutants from different vehicle categories. This work also demonstrates the value of evidence-based approach in 

support of effective control policy formulation. 

1 Introduction 

Vehicular emissions (VE) are among the major sources of air pollution in the urban environment. Major constituents in VE 

include nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs) and fine particulate matter 30 
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(PM2.5). Two primary components in vehicular PM2.5 (PMvehicle) are elemental carbon (EC) and organic matter (OM) 

(Kleeman et al., 2000; Chow et al., 2011). Growing evidence has shown exposure to VE affects human health (Peters et al., 

2004; Beelen et al., 2008; Benbrahim-Tallaa et al., 2012; Rice et al., 2015). With an increasing number of the global 

population residing in urban areas, VE have become the major target for source control in many parts of the world. But 

uncertainty over the relative importance of diesel and gasoline vehicles to PMvehicle often poses challenge in effective 35 

policymaking (Gertler, 2005). 

The Chemical Mass Balance (CMB) Model and Positive Matrix Factorization (PMF) Model are two prevalent receptor 

models for quantifying contributing sources to PM2.5 including VE. However, their capability to resolve separate 

contributions for diesel and gasoline vehicles is often severely constrained when relying on chemical constituents residing in 

the PM (particulate matter) fraction alone. In CMB, EC and certain organic compounds (e.g. hopanes, benzo[ghi]perylene 40 

and coronene) have been specifically used as tracers for deriving diesel and gasoline PMvehicle contributions, respectively 

(Schauer et al., 1996; Subramanian et al., 2006; Chow et al., 2007). However, the contributions of the two are often 

subjected to large uncertainty due to the substantial variability in source profiles and oxidation degradation of organic tracers 

(Subramanian et al., 2006; Weitkamp et al., 2008). On the other hand, PMF analysis of PM compositions often yields one 

overall VE factor due to the lack of tracers specific to individual VE types and the difficulty is compounded by the often 45 

similar temporal pattern of traffic activity among different vehicle types (Dallmann et al., 2014; Lee et al., 2015; Wang et al., 

2017). Some other chemical characteristics such as sub-fractions of OC and EC obtained from thermal analysis and metals 

(e.g. Mn and Fe) have been used in PMF to differentiate diesel and gasoline contributions (Kelly et al., 2013). These 

characteristics, however, are relatively less specific and thus they are often not applicable to typical urban areas where a 

complex mix of contributing sources exists. 50 

In Hong Kong (HK), PMvehicle contribution from diesel vehicles has reduced significantly over the last two decades, resulting 

from a series of ambitious control efforts. The success has been verified by results from an ad hoc roadside study and a study 

comparing the emissions in a local tunnel between 2003 and 2015 (Lee et al., 2017; Wang et al., 2018). Most HK studies in 

the past only reported overall PMvehicle contribution due to the lack of separate local source profiles for diesel and gasoline 

vehicles and constraints in PMF model posed by a lack of vehicle type specific tracers (Li et al., 2012; Huang et al., 2014; 55 

Cheng et al., 2015; Sun et al., 2016). Some studies achieved the separation either by using non-local source profiles in CMB, 

or by coupling vehicle type specific traffic data collected in a short period with aerosol mass spectrometry-based PMF 

(Zheng et al., 2006; Lee et al., 2017). The lack of a robust means to differentiate diesel and gasoline contributions to PMvehicle 

calls for a need to develop a more effective source apportionment strategy, especially considering the long-term need in 

monitoring their impact on air quality. 60 

In VOC source apportionment studies, certain VOC species have been used to track the contributions of specific vehicle 

types, such as propane and butanes for vehicles fueled by liquefied petroleum gas (LPG) and pentanes and toluene for 

gasoline vehicles (Lyu et al., 2016; Yao et al., 2019). These gaseous species, however, are rarely considered for deriving 

vehicle type specific PMvehicle. Lambe et al. (2009) added a few VOC species into their 2 h resolution organic tracer-based 
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PMF to explicitly apportion black carbon in Pittsburgh to diesel and gasoline vehicles. Thornhill et al. (2010) also used PMF 65 

with real-time gaseous species (including VOCs) and PM2.5 concentration data captured by a suit of mobile equipment to 

quantify PM2.5 contributions from diesel and gasoline vehicles in Mexico City. Our group reported limited exploration of the 

combined use of hourly VOCs and PM2.5 organic carbon (OC) and EC data in PMF to estimate the total PMvehicle at a 

roadside environment in HK (Huang et al., 2014). Here we present a detailed investigation on the feasibility of such an 

approach for separating PMvehicle contributions by diesel and gasoline vehicles using a comprehensive dataset covering six 70 

years between 2011 and 2017. 

The objective of this work is to establish an approach to obtain vehicle type specific PMvehicle, through integrating online 

routine monitoring data, such as NOx, hourly VOCs and OC-EC measurement data, into PMF analysis. The study features a 

six-year-long monitoring (2011–2017) in a roadside environment in HK. We evaluate this new method through comparing 

the total PMvehicle derived from an independent EC-tracer method developed previously, and for the first time report the long-75 

term trends in PMvehicle for diesel and gasoline vehicles in HK (Huang et al., 2014; Wong et al., 2019). Several policies 

targeting at diesel vehicles fell within the timeline of the study period, providing a valuable opportunity to examine their 

effectiveness. The methodology presented in this study for instrument deployment, data collection and analysis are highly 

recommended to the air quality management authorities as the research outcome has demonstrated how the routine 

monitoring dataset could be turned into measurement-based evidence for evaluating effectiveness of control policies 80 

targeting vehicles. 

2 Methods 

2.1 Roadside Measurements 

The study time window spans over a six-year period from May 2011 to August 2017. Sampling was conducted at Mong Kok 

Air Quality Monitoring Station (MK AQMS), which is a roadside site in the Air Quality Monitoring Network operated by 85 

the HK Environmental Protection Department (HKEPD). The station is located at the junction of two trunk roads, with an 

annual average daily traffic count of ~ 45,000 (Transport Department, 2018). Previous vehicle counting exercise showed that 

private cars fueled by gasoline, goods vehicles and buses fueled by diesel and taxis running on LPG made up 32 %, 22 %, 16 

% and 29 % of the vehicle fleet in the sampling area (Lee et al., 2017). In addition to the busy traffic, there are small shops, 

restaurants, and tall residential and commercial buildings in the immediate vicinity of the station. A previous study has 90 

shown that on-road vehicles are the most important sources of submicron carbonaceous aerosols at the site, followed by 

cooking activities (Lee et al., 2015). 

A semi-continuous OC-EC field analyzer system (RT-4, Sunset Laboratory, OR, USA) was operated to obtain hourly OC-

EC concentrations data in PM2.5. Details for the on-site operation, instrument conditions and quality control work during the 

entire sampling period are provided in the supplementary material. Hourly concentration data for PM2.5, C2–C9 VOCs, and 95 

trace gases including NOx and CO measured at the MK AQMS were provided by HKEPD. Details of the monitoring 
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equipment can be found in HKEPD’s annual air quality report (Environmental Protection Department, 2018). In particular, 

the VOCs were measured with a GC955 series 611/811 VOC analyzer (Syntech Spectras, The Netherlands) which quantifies 

30 species including 11 C2–C8 alkanes, 9 C2–C5 alkenes, 1 C2 alkyne and 9 C6–C9 single-ring aromatics. 

2.2 Data Treatment 100 

To avoid biased interpretation of the relationships between the measured species, we exclude hourly samples with one or 

more missing species from the subsequent data analyses. Sampling days with data cover rate (i.e., number of valid data/total 

number of hours during the study period) < 75 % are also excluded to maximize the representativeness of the concentration 

data of a sampling day. The trends presented throughout this study are constructed from the monthly averages. Only months 

with data cover rate > 33 % are considered. The monthly data cover rates are summarized in Fig. S1. 105 

2.3 Estimation of Vehicular PM2.5 by Positive Matrix Factorization 

Vehicular contributions to PM2.5 are quantified by PMF analysis using the EPA PMF 5.0 software (Paatero and Tapper, 

1994; Paatero, 1997; Norris et al., 2014). PMF is a receptor model that solves the chemical mass balance of a speciated 

sample data matrix by decomposing it into factor profiles and factor contributions with non-negative constraints, with the 

objective to minimize the uncertainty weighted deviation between observed and modeled species concentrations. In this 110 

work, concentrations of OC, EC, NOx, CO and twelve VOC species that were consistently detected above detection limit (> 

80 %) in each calendar year are included in the input dataset. The twelve VOCs include ethene, ethane, propane, propene, i-

butane, n-butane, i-pentane, n-pentane, benzene, toluene, ethylbenzene and m-&p-xylene. Some examples of the excluded 

VOCs are butadiene, n-hexane and n-heptane. Preliminary PMF analysis showed that including these species had no 

advantage in identifying more sources. Meanwhile, the considerable fraction of below detection limit data for these species 115 

would affect the quality of the PMF solutions. Details regarding other modeling inputs are provided in the supplementary 

material. Vehicle-related VOCs in the roadside environment are freshly emitted and thus should be mostly conserved, 

rendering them suitable for receptor modeling. PMvehicle for individual vehicle types are calculated as the sum of OM and EC 

in the corresponding factor profiles, considering it is primarily composed of OM and EC. OM is estimated to be OC 

multiplying by a factor of 1.2 based on organic aerosol mass spectra measured for both diesel and gasoline VE (Dallmann et 120 

al., 2014; Lee et al., 2015). 

We note that cooking emissions, a known OC source in MK, is not considered in the current PMF analysis, as the relevant 

tracer compounds for cooking was not supported with the instrumentation deployed in this study. We therefore relax the 

modeling of OC (i.e., allow the modeled OC to have a relatively larger deviation from measurement) by tripling its 

uncertainty. This approach allows the apportioning of OC a larger degree of freedom, which in effect allows the model to 125 

only capture the OC that is associated with the fitting species, whilst leaving the unrelated fraction as unapportioned OC. A 

sensitivity test showed that further doubling the OC uncertainty would not cause a discernible impact on the PMF solution. 

The robustness of the PMF solutions is examined through executing the displacement (DISP) and Fpeak (strength values of –

https://doi.org/10.5194/acp-2020-9
Preprint. Discussion started: 5 March 2020
c© Author(s) 2020. CC BY 4.0 License.



5 

 

5 and 5) functions. In bootstrap (BS) analysis, the input dataset was split into three groups of equal sample size for execution 

because of the limited computing capability of the software (total sample size = 24,586). Nevertheless, this practice allows 130 

us to assess the model uncertainty associated with using different subsets of samples, which will be discussed in the result 

section. 

2.4 Estimation of Vehicular PM2.5 by EC-tracer Method 

To evaluate the PMF estimation, an EC-tracer method specifically designed for estimating PMvehicle contribution in roadside 

environments is applied. Details regarding the principle and application of this method are documented in our previous work 135 

and a brief account is given here (Huang et al., 2014; Wong et al., 2019). In this method, VE is assumed to have a 

characteristic OC-to-EC ratio ([OC/EC]vehicle) and be responsible for all ambient EC. The latter represents a reasonable 

approximation given that the EC at MK AQMS was dominated by traffic exhaust over the entire study period, which will be 

discussed further in Sect. 3.1.2. With these assumptions, OCvehicle can be estimated as the product of the ambient EC 

concentration and the [OC/EC]vehicle, while PMvehicle can be estimated using the approach similar to that introduced in Sect. 140 

2.3 (i.e., PMvehicle = ECambient + OCvehicle × 1.2). 

The [OC/EC]vehicle is determined using the minimum OC/EC ratio approach, in which the OC in a certain lowest percentage 

range by OC/EC ratio are regressed on EC, and the slope obtained represents the target ratio (Lim and Turpin, 2002). These 

lowest OC/EC ratios typically represent the composition of primary emissions from fossil fuel combustion sources, which 

are clearly dominated by VE in roadside environment. In this study, the optimal Deming regression evaluated previously was 145 

applied on the lowest 5 % data by OC/EC ratio on a monthly basis (Huang et al., 2014). The analysis was performed using 

the Igor (WaveMetrics, Inc. Lake Oswego, OR, USA) based computer program developed by Wu (2017).  

3 Results and Discussion 

3.1 Ambient Trends 

3.1.1 OC Trends 150 

The monthly OC concentration showed a decreasing trend over the six-year period from May 2011 to August 2017 as shown 

in Fig. 1a. A consistent seasonal cycle with fall–winter (mid-September to mid-March of next year) high, summer (mid-May 

to mid-September) low and spring (mid-March to mid-May) in between is observed over the years. The study-wide OC in 

the three seasonal periods were 6.9±3.4, 3.9±2.6 and 5.9±2.8 µg C m–3, respectively (Fig. S2). The main cause for the 

seasonal variations of OC is related to the geographical location of HK, which is in the coastal area facing the South China 155 

Sea to the south and mainland China to the north. During the fall/winter monsoon season, the prevailing northeasterly wind 

transports pollutants from the continental area to HK (Hagler et al., 2006). Other reasons for the elevated OC observed in 

wintertime include reduced mixing height and enhanced partitioning of semivolatile organic compounds (SVOCs) into the 
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particle phase due to lower temperature and higher organic aerosol loading. It is noted that the decreasing trend of OC was 

mainly driven by the reduction in winter OC. The winter average OC concentration dropped significantly from 10.7 µg C m–160 

3 in 2011 to 4.3 µg C m–3 in 2017, while the decrease in summer was from 5.1 to 2.8 µg C m–3 during the same period. 

3.1.2 EC Trends 

The six-year trend of EC concentration is plotted in Fig. 1b, which shows a different temporal characteristic compared to 

OC. A main feature of the EC trend is the lack of seasonality throughout the years. The study-wide seasonal concentrations 

remained at ~ 5 µg C m–3 in all seasons (Fig. S2). We previously demonstrated that EC at MK AQMS was mainly influenced 165 

by vehicular traffic by showing similarities in their diurnal and weekday–holiday variation patterns (Huang et al., 2014). 

Such correlations persisted over the years (Fig. S3). These indicate that the EC concentration at the site was mainly affected 

by local VE sources and less impacted by regional sources regardless of season. In the first three years, the monthly EC 

concentrations fluctuated near the 5–6 µg C m–3 range. Starting from mid-2014, it declined significantly to the level of ~ 3 

µg C m–3 toward the end of the measurement period. Similar variation trend was also observed for NOx (Fig. 1c), which is 170 

mainly generated by on-road diesel vehicles in the roadside environment. Notably, these decreasing trends coincided with 

the launch of a Phasing Out Pre-Euro IV Diesel Commercial Vehicles Program in March 2014 in HK. The results here imply 

diesel vehicles were the major EC contributor at the sampling site. 

3.1.3 Carbonaceous Aerosols and PM2.5 Trends 

The relative contributions of carbonaceous aerosols to PM2.5 at MK AQMS over the study time window is shown in Fig. 1d. 175 

OM was approximated as OC × 1.4 for typical urban aerosols with primary and secondary origins. The PM2.5 concentration 

is overlaid on the same plot. As shown in the figure, PM2.5 concentration displayed a seasonal variation (winter high and 

summer low) similar to that of OC over the years, which was a result of combined effect of regional air pollutant transport 

and meteorological conditions, as discussed in Sect. 3.1.1. In the middle of the year with warmer weather and lower PM2.5 

mass (~ 20 µg m–3), EC showed an elevated relative contribution to ~ 30 %, and EC and OM had comparable contributions 180 

to PM2.5. The opposite was shown in colder season with higher PM2.5 mass (30–60 µg m–3). EC only made up ~ 15 % of 

aerosol mass while OM accounted for ~ 30 %. About two-thirds of PM2.5 in these periods were composed of non-

carbonaceous materials. Based on HKEPD’s continuous filter-based PM2.5 speciation effort, these materials mainly consist 

of secondary inorganics (sulfate, nitrate and ammonium), followed by crustal material, and trace elements (Yu and Zhang, 

2018). The secondary inorganic components have long been attributed to regional air pollution. The persistently large 185 

contributions from these components across the years indicates that controlling PM2.5 including its gaseous precursors (SO2, 

NOx and NH3) on a regional scale is still important to reduce the overall PM2.5 at this roadside location. 

3.1.4 n-Butane and i-Pentane Trends 

Figure 1 also shows multi-year trends in VOCs that are associated with specific vehicle types (LPG and gasoline). n-Butane 
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has been used to track LPG-fueled vehicles at MK AQMS (Lyu et al., 2016; Yao et al., 2019). As shown in Fig. 1e, no 190 

seasonality in n-butane level was observed over the years, supporting this species was predominantly emitted by local LPG 

vehicles. It remained at ~ 10–15 ppbv level in mid-2011–mid-2013, dropped precipitously to ~ 7 ppbv in the second half of 

2013, followed by a steadily declining trend until the end of the study period. Yao et al. (2019) reported similar trend 

characteristics for the same site with a more continuous dataset (September 2012–April 2017). The drop in the second half of 

2013 was a response to a catalytic converter replacement scheme for LPG-fueled vehicles implemented by the Government 195 

(Lyu et al., 2016). 

Similar to n-butane, i-pentane was also dominated by a local source as reflected by the absence of seasonality over the years 

(Fig. 1f). This gasoline exhaust/evaporation tracer remained fairly stable at ~ 1 ppbv level over the entire study period. Such 

an invariability is in line with a previous study showing the VOCs contributions from gasoline-powered vehicles in the same 

study area were relatively stable over the similar period (Yao et al., 2019). 200 

3.2 [OC/EC]vehicle for EC-tracer Method 

[OC/EC]vehicle determined using summer data (June, July and August) are very similar over the years and do not exhibit 

obvious trend over the years, as shown in Fig. 2a. The ratios range from 0.30 to 0.47, with R2 between 0.56–0.96 (sample 

size n = 18–33). Figure 2b plots the frequency of occurrence of the lowest 5 % OC/EC ratios in 24 hours of a day for the 

summer months. It shows that the lowest ratios occurred most frequently near the morning rush hour (7:00–10:00 a.m.) with 205 

minimal contribution from other primary sources (e.g. cooking emissions), supporting that these ratios were dominated by 

VE. The ratios were a factor of 2–3 higher in winter (Fig. S4), likely as a result of enhanced OC contributions from aged air 

mass and biomass burning from regional transport as discussed in Sect. 3.1.1. Thus, these values were likely biased high. 

Another complicating factor is that the reduction in ambient temperature and elevation in organic aerosol concentration in 

colder season would favor the partitioning of SVOCs into particle phase, thereby inflating the [OC/EC]vehicle (Robinson et al., 210 

2007). We did not account for this effect in this study. Instead, the summer values were adopted for deriving the 

[OC/EC]vehicle and this ratio is considered a lower-estimate for colder season samples. Given that similar [OC/EC]vehicle values 

were obtained in the summer months across the years, the mean value of 0.35 (standard deviation = 0.05) is considered to be 

the best estimate of [OC/EC]vehicle for subsequent analysis. 

3.3 Vehicular Contributions by PMF Analysis 215 

3.3.1 Source Identification 

Among various PMF runs, the result of five-factor run is the most interpretable for source identification and quantification. 

The contributing sources are identified through studying the presence of marker species and temporal variations in 

normalized contributions as shown in Fig. 3. Three vehicular factors are identified, corresponding to the vehicle types 

observed near the sampling site. The first factor represents diesel exhaust as it contains the majority of NOx and EC, which 220 
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are largely attributed to diesel vehicles. The low OC/EC ratio of 0.5 and diurnal profile, in line with traffic flow of diesel 

vehicles next to the site, further confirm its source identity. 

Factor 2 is associated with gasoline vehicles due to the dominant presence of i-/n-pentane. This factor also has a diurnal 

profile consistent with gasoline vehicle flow near the site, with evening peak occurring two hours later than that of diesel 

vehicles. The i-/n-pentane could be emitted through fuel evaporation and as unburnt gasoline in tailpipe exhaust, whereas the 225 

carbonaceous particulates with OC/EC ratio of 2.5 and CO signal tailpipe exhaust. 

Contribution from LPG-fueled vehicles is identified in the third factor by propane and i-/n-butane originating mainly from 

fuel evaporation. Its diurnal variation pattern is consistent with the activity pattern (busy in small hours) of local taxis 

running on LPG (Yu et al., 2016). Note this vehicle type has negligible contribution to PM, in agreement with the highly 

volatile nature of LPG. 230 

The fourth factor contains notable amount of toluene, ethylbenzene and m-&p-xylene that commonly exist in consumer and 

industrial products as solvent or in gasoline as additives (Bolden et al., 2015). Previous studies attributed this factor to 

solvent usage (Lyu et al., 2016; Yao et al., 2019). However, upon closer examination to its diurnal pattern, we found that this 

factor shows regular peaks around 11:00 and 17:00. Given the MK AQMS is surrounded by sixteen 24/7 gas stations within 

1.5 km (Fig. S5), and the peak business hours of some of these stations show similar diurnal variation pattern (based on 235 

popular times information from Google Maps, Fig. S5), we classify this factor as fuel-filling process instead of solvent 

usage. 

The last factor has abundant chemically stable ethane and benzene. Particulates in this factor are also enriched substantially 

in OC (OC/EC ratio ~ 9). In contrast to the three vehicle-related factors, absence of diurnal variation and presence of winter-

high and summer-low contribution were noted (Fig. S6). These characteristics collectively indicate this factor is aged air 240 

mass. 

3.3.2 Model Evaluation 

Modeling uncertainty estimation from DISP, Fpeak and BS (grouped samples) show that the solutions are rotationally and 

statistically robust, with details provided in the supplementary material. In particular, the factor profiles from the three 

grouped PMF analyses are very similar, as shown in Fig. S7. The [OC/EC]vehicle ratios for diesel vehicles are 0.5 in the all 245 

grouped runs, while those for gasoline vehicles are 1.8–2.2, implying the chemical characteristics of PMvehicle of the two 

remained similar over the study time period. The PMF solution (base run) is also evaluated from the modeling performance 

of the fitting species, which are summarized in Table S3. Most gaseous species are well reproduced (R2 = 0.73–0.95), except 

ethene and ethane (R2 = 0.32–0.40) due to their higher measurement uncertainties. Modeled EC is also consistent with the 

measurement (R2 = 0.90), but OC in comparison shows larger discrepancy (R2 = 0.64). 250 

To unveil the cause of the OC discrepancy, we compare the modeled and measured OC concentrations on a diurnal basis. 

The result is presented in Fig. 4 using box diagram. The plot reveals that the discrepancy mainly occurred during 12:00–

14:00 and 18:00–21:00. More specifically, the modeled OC were considerably lower than the measurement during these two 
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periods. This feature remained across all seasons as depicted in Fig. S8. Previous studies have attributed the two organic 

peaks during these two mealtime periods to cooking emissions (Lee et al., 2015; Sun et al., 2016). As mentioned in Sect. 2.3, 255 

we were unable to account for this source in PMF due to the lack of suitable tracer species for cooking emissions. 

Nevertheless, Fig. 4 shows that the modeled and measured OC had a good agreement during the non-mealtime hours (i.e., 

0:00–11:00 and 15:00–17:00). This indicates that the aged air mass factor and VE factors resolved by the PMF were able to 

explain the non-cooking OC, lending support to the PMF-derived OCvehicle. It should be noted that although PMF without 

down-weighting OC could bring the modeled OC into better agreement with measurement, the resolved factor profiles were 260 

less consistent among the three grouped PMF analyses, causing discontinuity in factor contributions between different 

periods. The improved interpretability of the PMF results indicates that down-weighting OC is necessary in our situation. 

3.3.3 PMF-derived OCvehicle Trends 

The separate diesel and gasoline OCvehicle concentrations over the entire study period are shown in Fig. 5a. A decreasing 

trend in the overall OCvehicle started to emerge in mid-2014, which was driven by the reduction in diesel OCvehicle. Between 265 

mid-2011 and mid-2014, diesel OCvehicle hovered at ~ 2 µg C m–3 level. It then started decreasing until 2017, upon which the 

concentration had dropped by half. Gasoline contribution, on the other hand, remained at ~ 1 µg C m–3 level over the entire 

study time period. As a result of the different pace of reductions, gasoline OCvehicle has grown in relative importance over the 

years as shown in Fig. 5d. In the first three years, gasoline vehicles were a smaller contributor compared to diesel vehicles, 

accounting for ~ 30 % of the OCvehicle, but afterwards, its contribution has become comparable to diesel vehicles, growing to 270 

40–50 %. Diesel and gasoline OCvehicle derived from the grouped PMF analyses and the associated uncertainties derived from 

the 5th and 95th percentile of the BS results are plotted in Fig. S9a, while the results obtained from the base run are also 

shown as solid lines in the graph. It appears that the division of samples into three time periods does not exert discernible 

influence on the results, though the gasoline OCvehicle occasionally deviated from the base result noticeably in the first time 

period. But in general, OCvehicle from the two vehicle categories have converged over the whole study time period. 275 

The overall OCvehicle derived from the EC-tracer method is plotted in Fig. 5a for comparison. It appears that this independent 

method can only account for the diesel fraction of PMF-derived OCvehicle. A plausible reason is that the [OC/EC]vehicle 

determined through the minimum OC/EC ratio approach (0.35) is biased toward diesel exhaust with low OC/EC ratio (0.47 

from PMF). The comparison here suggests the OCvehicle derived from the EC-tracer method reflects diesel influence better. 

The relative contribution of total OCvehicle to ambient OC exhibited a large seasonal dependence (Fig. S10a). In winter 280 

months when ambient OC concentration was high, VE made up 30–40 % of OC. The percentage share increased sharply to 

70–100 % in summer months when ambient OC was low. However, it should be noted that the PMF-modeled OC 

occasionally exceeded the measurement, and the exceedance increased with decreasing ambient OC level (Fig. S11). This 

could be attributed to the uncertainties arising from PMF modeling and measuring low level of OC, and thus the relative 

importance in summer months is likely overestimated. 285 
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3.3.4 PMF-derived ECvehicle Trends 

Trends in vehicular EC (ECvehicle) were very similar to those for OCvehicle, as shown in Fig. 5b. Different from OCvehicle, the 

ECvehicle derived from the PMF and EC-tracer method, which is essentially the ambient EC, agree well with each other. This 

is because PMF attributed the majority of the ambient EC to VE sources, more than 70 % as shown in Fig. S10b. As a result, 

the change in ECvehicle was very similar to that of ambient EC and thus is not repeated here. A key finding is that diesel 290 

vehicles dominated the ECvehicle over the entire study period, constituting more than 80 % of ECvehicle as shown in Fig. 5e. 

Such dominance remains valid after consideration of PMF modeling uncertainties (Fig. S9b). The above findings emphasize 

the reduction in EC over the years was mostly attributed to the control of diesel vehicles, and this vehicle category should 

deserve closer attention for further EC abatement. 

3.3.5 PMF-derived PMvehicle Trends 295 

The positive impact on air quality of vehicle control policies, if any, is more obvious if EC and OM from VE are considered 

together (i.e., PMvehicle). The monthly average PMvehicle by vehicle category are given in Fig. 5c. As of mid-2014, PMvehicle 

fluctuated slightly around the 8 µg m–3 level, followed by a considerable reduction to ~ 4 µg m–3 level in the beginning of 

2017. This amount of reduction represents one-fifth of typical PM2.5 concentration at MK AQMS during summer (~ 20 µg 

m–3). As noted from Fig. 5c, the reduction in PMvehicle was mainly driven by diesel vehicles, which was also the dominant 300 

PMvehicle contributor over the whole study period as given in Fig. 5f. Another finding from Fig. 5f is that the relative 

importance of gasoline vehicles has only grown slightly from ~ 20 % before mid-2014 to ~ 30 % afterwards despite the 

drastic decrease in diesel PMvehicle. After considering the PMF modeling uncertainties as depicted in Fig. S9c, it is still clear 

that diesel vehicles have dominated PMvehicle at MK AQMS over the entire study period, and this vehicle class should remain 

the focal point for further control of PMvehicle. 305 

PMvehicle estimated by the EC-tracer method are also compared with the PMF method in Fig. 5c. As shown, the disparity 

between the two approaches has narrowed considerably compared to OCvehicle. The improvement mainly involves the 

consideration of EC, which is similarly perceived as tracer for VE in the two estimation methods. The similarity between the 

PMvehicle obtained from the two methods lends support to our PMF model in producing reasonable estimates for separate 

diesel and gasoline PMvehicle contributions. Furthermore, the consistent results obtained from both methods highlight that 310 

PMvehicle was an important contributor to the PM2.5 at MK AQMS, with noticeable seasonal variation similar to that of 

OCvehicle, as given in Fig. S10c. Based on PMF results, during summer and under the dominance of local sources, VE was 

responsible for ~ 30–60 % of ambient PM2.5 during the study period. When PM2.5 concentration increased in winter due to 

regional influence, VE contribution dropped to roughly 10–20 %. 
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3.4 Policy Evaluation 315 

Tackling tailpipe emissions from diesel commercial vehicles (DCVs) and franchised bus is a long-term need in HK 

(Environment Bureau, 2013). A three-day detailed traffic counting exercise was conducted by the Government at the MK 

AQMS in May 2013. The details were reported in Lee et al. (2017). From that we are able to identify a truck-dominated 

period around midday (11:00–13:00) during which the trucks (i.e., DCVs) number is a factor of 2–3 higher than buses (~ 100 

vs. ~ 40 vehicle h–1), as well as a mid-night period (22:00–0:00) with buses count being 3 times higher than trucks (~ 60 vs. 320 

~ 20 vehicle h–1). Hence, the annual trends in diesel PMvehicle extracted from these two periods could provide indication on 

how diesel PMvehicle has been impacted by different policies. The results are presented in Fig. 6. Also shown in the figure is a 

background condition represented by the small hours (2:00–4:00) when diesel vehicle number reaches the minimum (~ 10 

vehicle h–1). A clear declining trend in diesel PMvehicle is noted for both vehicle-dominated periods, with both trends 

approaching the levels in the background period. 325 

For the truck-dominated trend, the PMvehicle levels started to drop after March 2014, which marks the commencement of the 

Phasing Out Pre-Euro IV DCVs Program implemented by the Government. This program aims at progressively replacing all 

Pre-Euro IV DCVs (~ 82,000) in HK by the end of 2019 (Environment Bureau, 2013). The diesel PMvehicle concentrations in 

the pre-DCV Program period and the start of 2017 were respectively ~ 9 and ~ 5 µg m–3, representing almost a 50 % 

reduction. The reduction also appeared to respond reasonably with the progress of the program shown in Fig. 6. Prior to this 330 

DCV program, another scheme that replaces ~ 7,400 Euro II DCVs was launched during July 2010–June 2013. That 

program, however, did not produce obvious impact on diesel PMvehicle, possibly because of the smaller scale of the 

implementation compared to the more recent DCV program. 

The declining trend in diesel PMvehicle during the bus-dominated period could be attributed to a host of control measures for 

franchised buses. In the intervening years, local franchised bus companies have been continuously scrapping and replacing 335 

old model buses with newer model buses complying with higher Euro Standards (Environment Bureau, 2013). At the level 

of transportation management, the Government has been pursuing reduction of bus trips in congested corridors through 

rationalization of bus routes. Setting up of low emission zones in densely populated spots including the MK area, where only 

cleaner model franchised buses are allowed, might also contribute to the decrease in bus-related PMvehicle contribution 

(Environment Bureau, 2013). 340 

Conclusions 

We present a holistic analysis on the long-term monitoring data of hourly PM2.5 OC and EC, vehicle-specific VOCs (e.g. n-

butane and i-pentane) and NOx concentrations in an urban roadside environment in HK. The dataset covers a six-year period 

from May 2011 to August 2017. Both OC and EC concentrations were observed to decrease notably over the entire study 

period, plausibly due to the efficient control of pollution sources on both regional and local context. By integrating OC, EC 345 

and VOCs (e.g. n-butane, i-pentane, benzene and xylene) datasets into PMF analysis, we successfully differentiate PMvehicle 
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contributions from diesel and gasoline vehicles, and for the first time report their individual long-term trends. The overall 

PMvehicle is also estimated by the EC-tracer method, which shows good agreement with that from the PMF analysis, 

supporting the PMvehicle estimate from the PMF. Our work identifies diesel vehicles as the dominant vehicle type in 

contributing PMvehicle (~ 70–80 %) over the entire study period. Thus, further VE control effort for mitigating roadside 350 

PMvehicle in HK should focus on diesel vehicles. The technique developed in this work could be extrapolated to other roadside 

environments with mixed vehicular contributions, considering both continuous OC and EC analyzers and online VOC 

instruments are increasingly incorporated in governments’ air quality monitoring programs. We note that the OCvehicle 

estimated by this approach serves as a lower limit for the vehicle-contributed OC since the fitting species considered here are 

all tracers for primary emissions. The primary emissions from on-road vehicles also have high potential to form secondary 355 

organic aerosols (Gentner et al., 2017), and this secondary PM derived from vehicles is not captured in PMvehicle estimates by 

our method. Future work should attempt to quantify this missing fraction of vehicular PM2.5 for more insightful policy 

implications. 
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Figure 1. Trends in concentrations of (a) OC, (b) EC, (c) NOx, (d) PM2.5, (e) n-butane and (f) i-pentane at MK AQMS. Each data 480 
point represents the monthly average of the hourly concentrations. Shaded areas represent one standard deviation for the hourly 

data. Commencements of the Phasing Out Pre-Euro IV Diesel Commercial Vehicles (DCV) Program and Catalytic Converters 

Replacement Program for LPG taxis are marked in figure (b), (c) and (e). In figure (d), relative contributions to PM2.5 from EC, 

OM and other components are shown in secondary axis. OM is approximated as OC × 1.4. Other components are the difference 

between measured PM2.5 and EC + OM. 485 

 

Figure 2. Determination of [OC/EC]vehicle for MK AQMS using optimal Deming regression of the lowest 5 % data by OC/EC ratio 

from summer months. Figure (a) presents the month-by-month [OC/EC]vehicle (grey columns), R2 of OC and EC (red markers) and 

number of data point considered (blue markers). Figure (b) shows the frequency of occurrence of the lowest 5 % OC/EC ratios at 

different hours of the day considering all of the summer data. 490 
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Figure 3. Factor profiles resolved by PMF analysis of hourly PM2.5 OC-EC, C2–C8 VOCs and other trace gases data at MK 

AQMS. Panels on left present the species relative contributions to each factor. Panels on right show the diurnal profile of 

normalized contribution from each factor in box-plots. For each box, solid square marker, horizontal line, lower and upper bound 

are mean, median, 25th and 75th percentile, respectively. 495 

    

Figure 4. Diurnal variations of OC concentrations in box-plots derived from ambient measurement (green boxes) and PMF 

modeling (grey boxes). For each box, solid square marker, horizontal line, lower and upper bound are mean, median, 25th and 75th 

percentile, respectively. The afternoon and evening mealtime periods are indicated in the orange frames. 
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Figure 5. Trends in contributions of diesel and gasoline vehicles at MK AQMS derived from PMF analysis (stacked areas) in terms 

of (a) OCvehicle, (b) ECvehicle and (c) PMvehicle concentrations. Relative contributions of the two vehicle types to the corresponding 

pollutants are shown in figure (d)–(f). The stacked areas are constructed by interpolation of the monthly data points. In all plots, 

each data point represents the monthly average of the hourly concentrations. Only months with data cover rate > 33 % are 505 
considered. Overall vehicular contributions derived from the EC-tracer method are shown in blue markers in figure (a)–(c). 

 

Figure 6. Trends in PMF-resolved diesel PMvehicle concentrations (left axis) at the MK AQMS during truck-dominated hours 

(11:00–13:00, blue line), bus-dominated hours (22:00–0:00, brown line), and background hours (2:00–4:00, grey line). Vertical 
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dashed line represents commencement of the Phasing Out Pre-Euro IV Diesel Commercial Vehicles Program (in March 2014). 510 
Green-shaded area represents the percent completion of the program (right axis). 

 

https://doi.org/10.5194/acp-2020-9
Preprint. Discussion started: 5 March 2020
c© Author(s) 2020. CC BY 4.0 License.


